Posted Date : 07th Mar, 2025
Peer-Reviewed Journals List: A Guide to Quality Research Publications ...
Posted Date : 07th Mar, 2025
Choosing the right journal is crucial for successful publication. Cons...
Posted Date : 27th Feb, 2025
Why Peer-Reviewed Journals Matter Quality Control: The peer revie...
Posted Date : 27th Feb, 2025
The Peer Review Process The peer review process typically follows sev...
Posted Date : 27th Feb, 2025
What Are Peer-Reviewed Journals? A peer-reviewed journal is a publica...
Strengthening of Shear Deficient RCL and .T- Beams with Externally Bonded FRP Sheet
Author Name : Aman Dangi, Abhishek Arya
ABSTRACT The rehabilitation of existing reinforced concrete (RC) bridges and building becomes necessary due to ageing, corrosion of steel reinforcement, defects in construction/design, demand in the increased service loads, and damage in case of seismic events and improvement in the design guidelines. Fiber-reinforced polymers (FRP) have emerged as promising material for rehabilitation of existing reinforced concrete structures. The rehabilitation of structures can be in the form of strengthening, repairing or retrofitting for seismic deficiencies. RC T-section is the most common shape of beams and girders in buildings and bridges. Shear failure of RC T-beams is identified as the most disastrous failure mode as it does not give any advance warning before failure. The shear strengthening of RC T-beams using externally bonded (EB) FRP composites has become a popular structural strengthening technique, due to the well-known advantages of FRP composites such as their high strength-to-weight ratio and excellent corrosion resistance. A few studies on shear strengthening of RC T-beams using externally bonded FRP sheets have been carried out but still the shear performance of FRP strengthened beams has not been fully understood. The present study therefore explores the prospect of strengthening structurally deficient T-beams by using an externally bonded fiber reinforced polymer (FRP).This study assimilates the experimental works of glass fiber reinforced polymer (GFRP) retrofitted RC T-beams under symmetrical four-point static loading system.